Deepspeed介绍和实战案例(Flan-T5和Bloom)

Deepspeed介绍和实战案例(Flan-T5和Bloom)

DeepSpeed是由Microsoft提供的分布式训练工具,旨在支持更大规模的模型和提供更多的优化策略和工具。与其他框架相比,DeepSpeed支持更大规模的模型和提供更多的优化策略和工具。其中,主要优势在于支持更大规模的模型、提供了更多的优化策略和工具(例如 ZeRO 和 Offload 等)

  • 用 3D 并行化实现万亿参数模型训练**:**  DeepSpeed 实现了三种并行方法的灵活组合:ZeRO 支持的数据并行,流水线并行和张量切片模型并行。3D 并行性适应了不同工作负载的需求,以支持具有万亿参数的超大型模型,同时实现了近乎完美的显存扩展性和吞吐量扩展效率。此外,其提高的通信效率使用户可以在网络带宽有限的常规群集上以 2-7 倍的速度训练有数十亿参数的模型。
  • ZeRO-Offload 使 GPU 单卡能够训练 10 倍大的模型**:**  为了同时利用 CPU 和 GPU 内存来训练大型模型,我们扩展了 ZeRO-2。我们的用户在使用带有单张英伟达 V100 GPU 的机器时,可以在不耗尽显存的情况下运行多达 130 亿个参数的模型,模型规模扩展至现有方法的10倍,并保持有竞争力的吞吐量。此功能使数十亿参数的模型训练更加大众化,,并为许多深度学习从业人员打开了一扇探索更大更好的模型的窗户。
  • 通过 DeepSpeed Sparse Attention 用6倍速度执行10倍长的序列**:**  DeepSpeed提供了稀疏 attention kernel ——一种工具性技术,可支持长序列的模型输入,包括文本输入,图像输入和语音输入。与经典的稠密 Transformer 相比,它支持的输入序列长一个数量级,并在保持相当的精度下获得最高 6 倍的执行速度提升。它还比最新的稀疏实现快 1.5–3 倍。此外,我们的稀疏 kernel 灵活支持稀疏格式,使用户能够通过自定义稀疏结构进行创新。
  • 1 比特 Adam 减少 5 倍通信量**:**  Adam 是一个在大规模深度学习模型训练场景下的有效的(也许是最广为应用的)优化器。然而,它与通信效率优化算法往往不兼容。因此,在跨设备进行分布式扩展时,通信开销可能成为瓶颈。我们推出了一种 1 比特 Adam 新算法,以及其高效实现。该算法最多可减少 5 倍通信量,同时实现了与Adam相似的收敛率。在通信受限的场景下,我们观察到分布式训练速度提升了 3.5 倍,这使得该算法可以扩展到不同类型的 GPU 群集和网络环境。

通信策略

deepspeed 还提供了 mpi、gloo 和 nccl 等通信策略,可以根据具体情况进行选择和配置。

  • mpi是一种跨节点通信库,常用于 CPU 集群上的分布式训练;
  • gloo 是一种高性能的分布式训练框架,支持 CPU 和 GPU 上的分布式训练;
  • nccl 是 NVIDIA 提供的 GPU 专用通信库,被广泛应用于 GPU 上的分布式训练。

在使用 DeepSpeed 进行分布式训练时,可以根据具体情况选择合适的通信库。通常情况下,如果是在 CPU 集群上进行分布式训练,可以选择 mpi 和 gloo;如果是在 GPU 上进行分布式训练,可以选择 nccl。

export CUDA_LAUNCH_BLOCKING=1

DeepSpeed训练介绍

在 DeepSpeed 中,可以通过在配置文件中设置 “bf16.enabled”: true 来启用 BF16 混合精度训练,减少占用内存。混合精度训练是指在训练过程中同时使用FP16(半精度浮点数)和FP32(单精度浮点数)两种精度的技术。

deepspeed可以根据具体情况选择合适的通信库,例如在 CPU 集群上进行分布式训练,可以选择 mpi 和 gloo;如果是在 GPU 上进行分布式训练,可以选择 nccl。

DeepSpeed的核心技术:Zero(Zero Redundancy Optimizer,3D优化与卸载):在deepspeed中通过zero_optimization.stage=0/1/2/3 设置,卸载通过zero_optimization.offload_optimizer.device设置

DeepSpeed的推理优化技术:

  • Deep fusion:如下图,红色虚线框是以该单位为优化Kernel,对应的数字是优化的效率倍数
  • Inference-customized GeMM

Zero(3D优化与卸载)

微软开发ZeRO是为了克服数据并行性和模型并行性的限制,同时实现两者的优点。ZeRO通过在数据并行进程中划分模型状态(参数,梯度和优化器状态),而不是复制它们,从而消除了数据并行进程中的内存冗余。它在训练期间使用动态通信计划,以在分布式设备之间共享必要的状态,以保持计算粒度和数据并行性的通信量**。**

ZeRO驱动的数据并行性,它允许每个设备的内存使用量随数据并行性的程度线性扩展,并产生与数据并行性相似的通信量。 ZeRO支持的数据并行性可以适合任意大小的模型,只要聚合的设备内存足够大以共享模型状态即可。

ZeRO(Zero Redundancy Optimizer)是一种用于大规模训练优化的技术,主要是用来减少内存占用。在大规模训练中,内存占用可以分为 Model States 和 Activation 两部分,而 ZeRO 主要是为了解决 Model States 的内存占用问题。

ZeRO 将模型参数分成了三个部分:Optimizer States、Gradient 和 Model Parameter。

  • Optimizer States 是 Optimizer 在进行梯度更新时所需要用到的数据,例如 SGD 中的 Momentum。
  • Gradient 是在反向传播后所产生的梯度信息,其决定了参数的更新方向。
  • Model Parameter 则是模型参数,也就是我们在整个过程中通过数据“学习”的信息。

ZeRO-Offload和ZeRO-Stage3是DeepSpeed中的不同的Zero-Redundancy Optimization技术,用于加速分布式训练,主要区别在资源占用和通信开销方面。

  • ZeRO-Offload将模型参数分片到不同的GPU上,通过交换节点间通信来降低显存占用,但需要进行额外的通信操作,因此可能会导致训练速度的下降。
  • **ZeRO-Stage3**将模型参数分布在CPU和GPU上,通过CPU去计算一部分梯度,从而减少显存占用,但也会带来一定的计算开销。

三个级别

ZeRO-0:禁用所有类型的分片,仅使用 DeepSpeed 作为 DDP (Distributed Data Parallel)

ZeRO-1:分割Optimizer States,减少了4倍的内存,通信容量与数据并行性相同

ZeRO-2:分割Optimizer States与Gradients,8x内存减少,通信容量与数据并行性相同

ZeRO-3:分割Optimizer States、Gradients与Parameters,内存减少与数据并行度和复杂度成线性关系。

ZeRO-Infinity是ZeRO-3的拓展。允许通过使用 NVMe 固态硬盘扩展 GPU 和 CPU 内存来训练大型模型。ZeRO-Infinity 需要启用 ZeRO-3。

在deepspeed中通过zero_optimization.stage=0/1/2/3 设置,

卸载通过zero_optimization.offload_ optimizer.device设置

混合精度

混合精度训练是指在训练过程中同时使用FP16(半精度浮点数)和FP32(单精度浮点数)两种精度的技术。使用FP16可以大大减少内存占用,从而可以训练更大规模的模型。但是,由于FP16的精度较低,训练过程中可能会出现梯度消失和模型不稳定的问题。因此,需要使用一些技术来解决这些问题,例如**动态精度缩放(Dynamic Loss Scaling)混合精度优化器(Mixed Precision Optimizer)**等。

Deepspeed介绍和实战案例(Flan-T5和Bloom)

deepspeed提供了混合精度训练的支持,可以通过在配置文件中设置"fp16.enabled": true来启用混合精度训练。在训练过程中,deepspeed会自动将一部分操作转换为FP16格式,并根据需要动态调整精度缩放因子,从而保证训练的稳定性和精度。

在使用混合精度训练时,需要注意一些问题,例如梯度裁剪(Gradient Clipping)和学习率调整(Learning Rate Schedule)等。梯度裁剪可以防止梯度爆炸,学习率调整可以帮助模型更好地收敛。因此,在设置混合精度训练时,需要根据具体情况进行选择和配置。

BF16和FP16都是混合精度训练中使用的浮点数表示格式

Deepspeed介绍和实战案例(Flan-T5和Bloom)

BF16是一种Brain Floating Point格式,由英特尔提出,可以提供更好的数值稳定性和更高的精度,但需要更多的存储空间。在混合精度训练中,BF16可以作为一种精度更高的替代品,用于一些关键的计算操作,例如梯度累加和权重更新等。使用BF16可以提高模型的训练速度和精度,并减少内存占用。

在 DeepSpeed 中,可以通过在配置文件中设置 "bf16.enabled": true 来启用 BF16 混合精度训练。这将会将一部分操作转换为 BF16 格式,并根据需要动态调整精度缩放因子,从而提高模型的训练速度和精度,并减少内存占用。

DeepSpeed训练

基本训练的介绍

安装 DeepSpeed:pip install deepspeed

使用 DeepSpeed 命令行:

单机:

deepspeed --num_gpus=8 train.py

多节点:

deepspeed --hostfile=hostfile --master_port 60000 --include="node1:0,1,2,3@node2:0,1,2,3" run.py  --deepspeed ds_config.json

hostfile

增加hostfile文件,填写host的相应的gpu数量(slots=4代表有4个gpu),include参数,指定机器和gpu,如下代表使用host1机器的3号和host2的2、3号gpu

node1_ip slots=4
node2_ip slots=4

ds_config.json

{
    "fp16": {
        "enabled": true,
        "loss_scale": 0,
        "loss_scale_window": 1000,
        "initial_scale_power": 16,
        "hysteresis": 2,
        "min_loss_scale": 1
    },
 
    "optimizer": {
        "type": "AdamW",
        "params": {
            "lr": 3e-5,
            "betas": [0.8, 0.999],
            "eps": 1e-8,
            "weight_decay": 3e-7
        }
    },
 
    "scheduler": {
        "type": "WarmupLR",
        "params": {
            "warmup_min_lr": 0,
            "warmup_max_lr": 3e-5,
            "warmup_num_steps": 500
        }
    },
 
    "zero_optimization": {
        "stage": 3,
        "offload_optimizer": {
            "device": "cpu",
            "pin_memory": true
        },
        "offload_param": {
            "device": "cpu",
            "pin_memory": true
        },
        "overlap_comm": true,
        "contiguous_gradients": true,
        "sub_group_size": 1e9,
        "reduce_bucket_size": 1e6,
        "stage3_prefetch_bucket_size": 0.94e6,
        "stage3_param_persistence_threshold": 1e4,
        "stage3_max_live_parameters": 1e9,
        "stage3_max_reuse_distance": 1e9,
        "stage3_gather_16bit_weights_on_model_save": true
    },
 
    "steps_per_print": 2000,
    "wall_clock_breakdown": false
}

训练案例代码

这里用的FLAN-T5模型;启动deepspeed:deepspeed --include=localhost:1,2 train.py,启动前两张显卡;注意使用ZeRO3需要有足够的内存.

如果不使用trianer来集成deepspeed,from_pretrained和 from_config这样的核心功能应该包含DeepSpeed中的重要部分,例如zero。初始化Zero的时候应该为stage3或者更高。

{
  "bf16": {
    "enabled": "auto"
  },
  "optimizer": {
    "type": "AdamW",
    "params": {
      "lr": "auto",
      "betas": "auto",
      "eps": "auto",
      "weight_decay": "auto"
    }
  },
  "scheduler": {
    "type": "WarmupLR",
    "params": {
      "warmup_min_lr": "auto",
      "warmup_max_lr": "auto",
      "warmup_num_steps": "auto"
    }
  },
  "zero_optimization": {
    "stage": 3,
    "offload_optimizer": {
      "device": "cpu",
      "pin_memory": true
    },
    "offload_param": {
      "device": "cpu",
      "pin_memory": true
    },
    "overlap_comm": true,
    "contiguous_gradients": true,
    "sub_group_size": 1e9,
    "reduce_bucket_size": "auto",
    "stage3_prefetch_bucket_size": "auto",
    "stage3_param_persistence_threshold": "auto",
    "stage3_max_live_parameters": 1e9,
    "stage3_max_reuse_distance": 1e9,
    "stage3_gather_16bit_weights_on_model_save": false
  },
  "gradient_accumulation_steps": "auto",
  "gradient_clipping": "auto",
  "steps_per_print": 2000,
  "train_batch_size": "auto",
  "train_micro_batch_size_per_gpu": "auto",
  "wall_clock_breakdown": false
}

  • 数据:samsum数据集
  • 模型:google/flan-t5-xxl大模型
# !/usr/bin/python
# -*- coding: utf-8 -*-
 
import nltk
import torch
import evaluate
import datasets
import numpy as np
from nltk.tokenize import sent_tokenize
from torch.utils.data import DataLoader
from torch.nn.utils.rnn import pad_sequence
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from transformers import Seq2SeqTrainer, Seq2SeqTrainingArguments
 
nltk.download("punkt")
 
dataset_name = "samsum" # 数据集名称
model_name="google/flan-t5-xxl" # 模型名称
max_input_length = 512
max_gen_length = 128
output_dir = "checkpoints"
num_train_epochs = 5
learning_rate = 5e-5
deepspeed_config = "./ds_config.json" # deepspeed配置文件
per_device_train_batch_size=1 # batch size设置为1,因为太大导致OOM
per_device_eval_batch_size=1
gradient_accumulation_steps=2 # 由于单卡的batch size为1,为了扩展batch size,使用梯度累加
 
tokenizer = AutoTokenizer.from_pretrained(model_name)
 
# 加载数据
dataset = datasets.load_dataset(dataset_name)
print(dataset["train"][0])
 
# tokenize
def preprocess(examples):
    dialogues = ["summarize:" + dia for dia in examples["dialogue"]]
    # summaries = [summ for summ in examples["summary"]]
    model_inputs = tokenizer(dialogues, max_length=max_input_length, truncation=True)
    labels = tokenizer(text_target=examples["summary"], max_length=max_gen_length, truncation=True)
    model_inputs["labels"] = labels["input_ids"]
    return model_inputs
 
tokenized_dataset = dataset.map(preprocess, batched=True, remove_columns=["dialogue", "summary", "id"])
# print(tokenized_dataset["train"]["input_ids"][0]) # 打印结果
 
 
# 对batch进行padding
def collate_fn(features):
    batch_input_ids = [torch.LongTensor(feature["input_ids"]) for feature in features]
    batch_attention_mask = [torch.LongTensor(feature["attention_mask"]) for feature in features]
    batch_labels = [torch.LongTensor(feature["labels"]) for feature in features]
 
    batch_input_ids = pad_sequence(batch_input_ids, batch_first=True, padding_value=tokenizer.pad_token_id)
    batch_attention_mask = pad_sequence(batch_attention_mask, batch_first=True, padding_value=0)
    batch_labels = pad_sequence(batch_labels, batch_first=True, padding_value=-100)
 
    return {
        "input_ids": batch_input_ids,
        "attention_mask": batch_attention_mask,
        "labels": batch_labels
    }
# 用于测试的代码
# dataloader = DataLoader(tokenized_dataset["test"], shuffle=False, batch_size=4, collate_fn=collate_fn)
# batch = next(iter(dataloader))
# print(batch)
 
 
# 加载模型
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
# 用于测试的代码
# dataloader = DataLoader(tokenized_dataset["test"], shuffle=False, batch_size=4, collate_fn=collate_fn)
# batch = next(iter(dataloader))
# output = model(**batch)
# print(output)
 
 
# 定义评估函数
metric = evaluate.load("rouge")
 
def compute_metrics(eval_preds):
    preds, labels = eval_preds
    if isinstance(preds, tuple):
        preds = preds[0]
    decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
    labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
    decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
    decoded_preds = ["\n".join(sent_tokenize(pred.strip())) for pred in decoded_preds]
    decoded_labels = ["\n".join(sent_tokenize(label.strip())) for label in decoded_labels]
    result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)
    result = {k: round(v * 100, 4) for k, v in result.items()}
    prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
    result["gen_len"] = np.mean(prediction_lens)
    return result
 
 
# 设置训练参数
training_args = Seq2SeqTrainingArguments(
    output_dir=output_dir,
    per_device_train_batch_size=per_device_train_batch_size,
    per_device_eval_batch_size=per_device_eval_batch_size,
    gradient_accumulation_steps=gradient_accumulation_steps,
    eval_accumulation_steps=1, # 防止评估时导致OOM
    predict_with_generate=True,
    fp16=False,
    learning_rate=learning_rate,
    num_train_epochs=num_train_epochs,
    # logging & evaluation strategies
    logging_dir="logs",
    logging_strategy="steps",
    logging_steps=50, # 每50个step打印一次log
    evaluation_strategy="steps",
    eval_steps=500, # 每500个step进行一次评估
    save_steps=500,
    save_total_limit=2,
    load_best_model_at_end=True,
    deepspeed=deepspeed_config, # deepspeed配置文件的位置
    report_to="all"
)
 
 
# 模型训练
trainer = Seq2SeqTrainer(
    model=model,
    args=training_args,
    train_dataset=tokenized_dataset["train"],
    eval_dataset=tokenized_dataset["validation"],
    data_collator=collate_fn,
    compute_metrics=compute_metrics,
)
 
trainer.train()
# 打印验证集上的结果
print(trainer.evaluate(tokenized_dataset["validation"]))
# 打印测试集上的结果
print(trainer.evaluate(tokenized_dataset["test"]))
# 保存最优模型
trainer.save_model("best")

deepspeed加速Bloom lora微调

  • 数据:使用BELLE提供的100万条指令微调数据
  • 模型:bloomz-7b1-mt模型
{
  "train_micro_batch_size_per_gpu": "auto",
  "gradient_accumulation_steps": "auto",
  "steps_per_print": 50,
  "gradient_clipping": 1.0,
  "zero_optimization": {
    "stage": 2,
    "offload_optimizer": {
            "device": "cpu"
    },
    "contiguous_gradients": true,
    "overlap_comm": true
  },
  "zero_allow_untested_optimizer": true,
  "fp16": {
    "enabled": true,
    "loss_scale": 0,
    "loss_scale_window": 1000,
    "hysteresis": 2,
    "min_loss_scale": 1
  },
  "optimizer": {
    "type": "Adam",
    "params": {
      "lr": "auto",
      "betas": "auto",
      "eps": "auto",
      "weight_decay": "auto"
    }
  },
  "activation_checkpointing": {
    "partition_activations": true,
    "contiguous_memory_optimization": true
  },
  "wall_clock_breakdown": false
}

deepspeed --include=localhost:0,1,2,3 train.py启动

#!/usr/bin/env python
# -*- coding: utf-8 -*-
 
import os
import torch
import random
import datasets
import numpy as np
from tqdm import tqdm
from typing import Dict
from torch.utils.data import DataLoader
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    DataCollatorForSeq2Seq,
    TrainingArguments,
    Trainer
)
from peft import (
    LoraConfig,
    TaskType,
    get_peft_model,
    get_peft_model_state_dict,
    set_peft_model_state_dict
)
 
def set_random_seed(seed):
    if seed is not None and seed > 0:
        random.seed(seed)
        np.random.seed(seed)
        torch.manual_seed(seed)
        torch.random.manual_seed(seed)
        torch.cuda.manual_seed(seed)
        torch.cuda.manual_seed_all(seed)
        torch.backends.cudnn.deterministic = True
 
set_random_seed(1234)
 
# 1. 设置参数
# LoRA参数
LORA_R = 8
LORA_ALPHA = 32
LORA_DROPOUT = 0.1
# 训练参数
EPOCHS=3
LEARNING_RATE=5e-5
OUTPUT_DIR="./checkpoints"
BATCH_SIZE=4 # 2
GRADIENT_ACCUMULATION_STEPS=3
# 其他参数
MODEL_PATH = "bigscience/bloomz-7b1-mt"
DATA_PATH = "./data/belle_open_source_1M.train.json"
MAX_LENGTH = 512
PATTERN = "{}\n{}"
DS_CONFIG = "ds_zero2_config.json"
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH) # 加载tokenizer
# 加载数据
dataset = datasets.load_dataset("json", data_files=DATA_PATH)
# print(dataset["train"][0])
 
 
# 2. tokenize
def tokenize(text: str, add_eos_token=True):
    result = tokenizer(
        text,
        truncation=True,
        max_length=MAX_LENGTH,
        padding=False,
        return_tensors=None)
    # 判断是否要添加eos_token
    if (result["input_ids"][-1] != tokenizer.eos_token_id
        and len(result["input_ids"]) < MAX_LENGTH
        and add_eos_token):
        result["input_ids"].append(tokenizer.eos_token_id)
        result["attention_mask"].append(1)
    result["labels"] = result["input_ids"].copy()
    return result
 
 
def preprocess(example: Dict, train_on_inputs: bool = False):
    prompt = example["input"]
    response = example["target"]
    text = PATTERN.format(prompt, response)
    tokenized_inp = tokenize(text)
    # 若train_on_inputs为False,则将label中与input相关的token替换为-100
    if not train_on_inputs:
        tokenized_prompt = tokenize(prompt,add_eos_token=False)
        prompt_tokens_len = len(tokenized_prompt["input_ids"])
        tokenized_inp["labels"] = [-100]*prompt_tokens_len + tokenized_inp["labels"][prompt_tokens_len:]
    return tokenized_inp
 
 
train_data = dataset["train"].shuffle().map(preprocess, remove_columns=["id", "input", "target"])
print(train_data[0])
 
# pad_to_multiple_of=8表示padding的长度是8的倍数
collate_fn = DataCollatorForSeq2Seq(tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True)
 
# 2. 加载模型
evice_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
# device_map指定模型加载的GPU;troch_dtype=torch.float16表示半精度加载模型
model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, torch_dtype=torch.float16, device_map=device_map)
 
 
# 3. LoRA相关
lora_config = LoraConfig(
    task_type=TaskType.CAUSAL_LM,
    inference_mode=False,
    r=LORA_R, # LoRA中低秩近似的秩
    lora_alpha=LORA_ALPHA, # 见上文中的低秩矩阵缩放超参数
    lora_dropout=LORA_DROPOUT, # LoRA层的dropout
)
# 转换模型
model = get_peft_model(model, lora_config)
model.config.use_cache = False
old_state_dict = model.state_dict
model.state_dict = (
    lambda self, *_, **__: get_peft_model_state_dict(self, old_state_dict())
).__get__(model, type(model))
# 打印模型中的可训练参数
model.print_trainable_parameters()
 
 
# 4. 训练参数
args = TrainingArguments(
    output_dir=OUTPUT_DIR, # checkpoint的存储目录
    per_device_train_batch_size=BATCH_SIZE, # 单设备上的batch size
    gradient_accumulation_steps=GRADIENT_ACCUMULATION_STEPS, # 梯度累加的step数
    warmup_steps=100,
    num_train_epochs=EPOCHS,
    learning_rate=LEARNING_RATE,
    fp16=True, # 使用混合精度训练
    logging_steps=50,
    evaluation_strategy="no", # 不进行评估
    save_strategy="steps",
    save_steps=2000, # 保存checkpoint的step数
    save_total_limit=5, # 最多保存5个checkpoint
    deepspeed=DS_CONFIG
)
 
 
# 5. 模型训练
trainer = Trainer(
    model=model,
    train_dataset=train_data,
    eval_dataset=None,
    args=args,
    data_collator=collate_fn
)
trainer.train()
model.save_pretrained("best_model")
本文来自投稿,不代表美熙智能立场,如若转载,请注明:原作者名和出处https://www.icnma.com
(0)
JiangYuan管理
上一篇 21/03/2024 16:05
下一篇 21/03/2024 20:20

猜你想看

发表回复

登录后才能评论